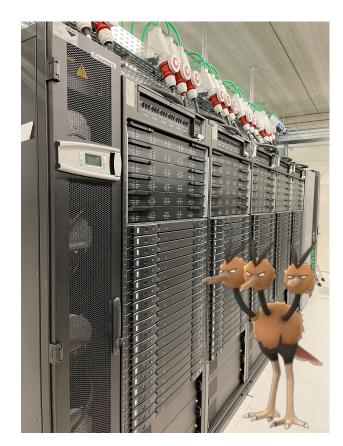




VSC Tier-1 Hortense kickoff meeting

compute@vscentrum.be

https://docs.vscentrum.be/en/latest/gent/tier1 hortense.html


15 March 2022

Hortense: hardware & system software

- Operating system: RHEL 8.4
- Resource manager: Slurm (with Torque frontend)
- dodrio cluster (phase 1 of Hortense) with 3+1 partitions:
 - o Main partition cpu rome: 294 nodes, each with:
 - 2x 64-core AMD Epyc 7H12 2.6 GHz (128 cores per node)
 - 256 GiB RAM (~2GB/core), no swap
 - Large-memory partition cpu_rome_512: 42 nodes, each with:
 - 2x 64-core AMD Epyc 7H12 2.6 GHz (128 cores per node)
 - 512 GiB RAM (~4GB/core), no swap
 - O GPU partition cpu_rome_a100: 20 workernodes, each with:
 - **2x 24-core** AMD Epyc 7402 CPU 2.8 GHz (48 cores per node)
 - 256 GiB RAM (~5GB/CPU core), no swap dual HDR-100 Infiniband
 - **4x NVIDIA A100-SXM4 GPU** (40 GB GPU memory), NVLink3
 - o cpu_rome_all: combination of cpu_rome and cpu_rome_512
- Interconnect: Infiniband HDR-100 (~12.5GB/sec), 2:1 fat tree topology
- Scratch filesystem: 3 PB (Lustre)

Hortense: current status (15 March '22)

- System is now ready for production
- All hardware of first partition of Hortense (nicknamed "dodrio") is available
- Extensively tested by pilot users (Nov'21 Mar'22)
- Progress was made on issues that emerged during pilot phase
 - Problems with scratch filesystem (Lustre) have been resolved
 - Workaround for performance issues is available via /readonly mount of scratch filesystem
 - Central scientific software stack was reinstalled (in /readonly) + more software was added
 - Improvements to job wrapper commands (jobcli Torque frontend)
 - Dedicated web portal for Tier-1 Hortense has been set up
- Documentation has been updated and extended
- User-friendly overview of consumed credits is not available yet, coming soon...

Hortense: access via login nodes (SSH)

- Dedicated login nodes for Tier-1 Hortense: tier1.hpc.ugent.be
 - o 2 login nodes (login55, login56), assigned round-robin
- Log in with your existing VSC account
 - Example: ssh vsc40000@tier1.hpc.ugent.be
 - Access is only available if you have an accepted Tier-1 compute project (or starting grant, contract, ...)
 - https://www.vscentrum.be/compute
- Very limited resources on login nodes
 - 8 cores + ~60GB of RAM
 - Please only use login nodes as an access portal!
 - Software compilation, testing job scripts, etc. => use an interactive job (qsub -I)
- Host key of login nodes was changed during maintenance last week!

Hortense: access via web portal

- Dedicated web portal (using Open OnDemand) is available at https://tier1.hpc.ugent.be
- Only requires an internet browser (Firefox, Chrome, ...) no other software needed on client
- Accessible only from within a Flemish university network
 - o On other networks (at home, abroad, ...) VSC firewall app (https://firewall.hpc.kuleuven.be) is required
 - Log in via VSC accountpage, keep tab with firewall app open while using web portal

Features:

- File browser
- Overview of active jobs + job composer
- Graphical desktop environment or Jupyter notebook on Hortense workernode
- Terminal window in your internet browser (via "Clusters" -> "login shell access")
- Detailed documentation available in Chapter 8 of <u>HPC-UGent user manual</u>

Hortense: accounting

- Tier-1 project names examples: 2021_052 or largescale_006
- User group corresponding to Tier-1 may have an additional prefix (gpr_compute_...)
- Dedicated scratch directory is available for each project
 - \$VSC_SCRATCH_PROJECTS_BASE/name_of_project
- Specifying a project when submitting jobs is required via "account" option
 - o qsub -A name_of_project
 - #PBS -A name_of_projectin job script
- Testing phase has been concluded, consumed compute time will not be reset!
- User-friendly overview of consumed credits is a work-in-progress, coming soon...

Hortense: storage, shared filesystems

- \$VSC HOME: VSC home filesytem (off-site for non-UGent VSC accounts)
- \$VSC_DATA*: VSC data filesystem (off-site for non-UGent VSC accounts)
- Scratch filesystem local to Hortense (3PB total)
 - Project-specific scratch directories in \$VSC_SCRATCH_PROJECTS_BASE
- "home-on-scratch" setup
 - \$HOME is actually a (small, 3GB) personal subdirectory on Hortense scratch filesystem
 - Login + jobs still work in case of maintenance or network trouble in non-UGent VSC site
 - ... as long as you only use the scratch filesystem in your jobs (no \$VSC_HOME or \$VSC_DATA)
 - Try to not just symlink to \$VSC_HOME or \$VSC_DATA (defeats the purpose of this setup)
- Large data transfer via Globus: use existing UGent Tier-2 endpoint

Hortense: cluster-specific aspects

- Slurm backend with Torque frontend
 - Slurm is used as resource manager (backend)
 - Recommendation is to submit/manage jobs via Torque frontend: qsub, qstat, qdel, ...
 - Job submissions should work the same as on Tier-1 BrENIAC (except for features, ppn=128, ...)
 - o To look behind the curtain: use qsub --debug (preview job submission: qsub --dryrun)
 - o Torque frontend wrapper scripts implemented by jobcli Python library developed by VSC
 - Hard limit on walltime for jobs: 72 hours (3 days)
- Controlling the partition where jobs get submitted is done via cluster/dodrio/* module
 - (current) default: main partition (cluster/dodrio/cpu_rome)
 - o To submit to large-memory partition: module swap cluster/dodrio/cpu_rome_512
 - To submit to GPU partition: module swap cluster/dodrio/gpu_rome_a100
 - To submit very large CPU-only jobs: module swap cluster/dodrio/cpu_rome_all
 - To check currently "active" partition: module list cluster

Hortense: scientific software stack

- Central software stack is available via the familiar module interface (Lmod)
 - o For overview of all installed software: module avail
 - o Inspect module via module show (toolchain components, dependencies, extensions, ...)
 - Only recent compilers (due to compatibility with RHEL8 + AMD Rome processors)
 - foss/2020b (GCC 10.2, OpenMPI 4.0.5, OpenBLAS 0.3.12)
 - intel/2020b(GCC 10.2 as base, Intel compilers 2020.4, Intel MPI 2019.9, Intel MKL 2018.4)
 - Or more recent (standard) versions of foss and intel toolchains (oneAPI versions)
 - See also https://docs.easybuild.io/en/latest/Common-toolchains.html#overview-of-common-toolchains
 - Modules installed with GCC (core) subtoolchain are compatible with corresponding foss or intel
 - All central software is installed using EasyBuild (https://easybuild.io), no exceptions
 - EasyBuild can also be used to install additional software in your project scratch directory (ask for help if needed)
- Singularity container runtime also available (v3.8.6), no module needed, --fakeroot supported for building

Hortense: attention points w.r.t. performance

Accessing data via / readonly

- Lustre has an aggressive page cache purging policy
- Can have a significant negative impact on performance & runtime variability of jobs
- Impact depends on number of files, file sizes, access pattern (random I/O, ...), etc.
- Hortense scratch filesystem is also accessible via /readonly mount point
 - Workaround for aggressive page cache purging => better performance + less variability
 - Comes with limitations: delay in visibility of file changes (max. 30min), read-only access to files
- Juse use /readonly/\$VSC_SCRATCH_PROJECTS_BASE/... rather than \$VSC_SCRATCH_PROJECTS_BASE/...
- Also applies to software installations on Hortense scratch filesystem (incl. central software stack)!
 - For self-installed software: install such that it can be accessed it via /readonly (see docs!)

https://docs.vscentrum.be/en/latest/gent/tier1_hortense.html#accessing-data-via-readonly
https://docs.vscentrum.be/en/latest/gent/tier1_hortense.html#accessing-software-via-readonly-mount-point

Hortense: attention points w.r.t. performance

Attention points due to AMD Rome processors in Hortense (dodrio):

- When compiling software from source yourself:
 - With Intel compilers: do not use -xHost, use -march=core-avx2 (or -mavx2 -fma)
 - When using -xHost, Intel compilers fall back to SSE4.2 (no AVX or AVX2!)
 - Potentially (very) big impact on performance!
 - When linking with Intel MKL: keep an eye on performance!
 - Be careful with imkl 2018.x (only in intel/2020b) vs imkl 2021.x (intel/2021*)
 - We can not keep relying on imkl 2018.x (OpenMP support, etc.)
 - o BLAS/LAPACK: Intel MKL (intel/*) and OpenBLAS (foss/*) are mostly on-par w.r.t. performance
 - FFT: FFTW is (currently) significantly slower than FFTW wrappers in Intel MKL!
- Other performance aspects:
 - Very different processor layout and cache hierarchy compared to Intel processors
 - It may be beneficial to *not* use all 128 cores in a workernode (due to memory bandwidth)
 - Proper thread/process pinning can make a big difference!

Hortense: tips & tricks

Use mympirun tool for running MPI jobs

- module load vsc-mympirun(don't specify a version, always use latest)
- o mpirun -np 128 your_app=> mympirun your_app
- All available cores in job are used automatically
- Use mympirun --hybridto control number of MPI processes per node
- All details via: mympirun --debug, mympirun --dryrun
- Cluster overview via pbsmon command (also shows partition info)
- GPU jobs: you should request 12 cores per GPU (remember: 4 GPUs per node, 48 cores per node)

```
module swap cluster/dodrio/gpu_rome_a100
qsub -l nodes=1:ppn=12*G:gpus=G (singe-node job, 1 or more GPUs, max. 4 GPUs)
(where: 1<= G <= 4)</pre>
```

Hortense: coming soon...

- User-friendly way to check consumed compute time via "resource app"
- Debug partition: limited set of oversubscribed workernodes (incl. GPU)
 - To shorten turnaround time for testing job scripts
 - For interactive sessions (qsub -I, GUI session via web portal, ...)
 - With **strict user limits** w.r.t. number of queued/running jobs & resources in use (cores, memory, GPU)
- Changes to Lustre configuration to mitigate performance impact (when /readonly is not used)

Hortense: timeline

- 23 Nov 2021: Hortense phase 1 (dodrio) is ready for testing
- 14 Dec 2021: follow-up meeting with pilot users
- 6 Feb 2022: cut-off date for new Tier-1 project proposals
- 9 Mar 2022: acceptance notification for new Tier-1 projects
- 11 Mar 2022: Hortense phase 1 (dodrio) is ready for production
- 15 Mar 2022 (today): kickoff meeting for new Tier-1 projects
- Next cut-off dates for Tier-1 project proposals:
 - 7 June 2022
 - 3 October 2022
 - See https://www.vscentrum.be/compute

Hortense: getting help

- For all feedback and questions: contact <u>compute@vscentrum.be</u>
- Please report problems or unexpected behaviour with:
 - Overall system stability
 - Central scientific software stack
 - Scratch filesystem
 - Unexpected errors in jobs
 - Performance issues
 - Torque frontend job wrappers (qsub, qstat, ...)
 - Use of mympirun
- System changes + maintenance will be communicated via:
 - o Tier-1 Hortense mailing list: <u>t1-users@lists.ugent.be</u>
 - HPC-UGent status page: https://www.ugent.be/hpc/en/infrastructure/status

Hortense: documentation and support

Documentation: https://docs.vscentrum.be/en/latest/gent/tier1 hortense.html

Status page: https://www.ugent.be/hpc/en/infrastructure/status

For questions or problems: contact VSC support team via email

- compute@vscentrum.be
- Please mention [Hortense] in email subject!

Mailing list: <u>t1-users@lists.ugent.be</u> (moderated even for list members)

Software installation requests:

- Please use the HPC-UGent request form!
- https://www.ugent.be/hpc/en/support/software-installation-request
- Select Tier-1 Hortense as target system